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Abstract: An alternative method for generating [2]. The wavelet-like functions have also been
higher dimensional wavelet-like basis functions used as the basis for a finite element time-
is proposed in this paper. One method that has domain algorithm [3]. Although the wavelet-like
been used was to derive the two-dimensional functions are not true wavelets, they do exhibit
wavelet-like basis from the two-dimensional some of the benefits that have caused wavelets to
traditional finite element basis. However, in this receive attention. One advantage that will be
paper, products of one-dimensional wavelet-like discussed in detail in this, paper is that wavelet-
functions are used as two-dimensional wavelet- like basis functions have good stability and
like basis functions. The generation of linear convergence properties.
wavelet-like functions is discussed in detail and
the use of linear and higher order wavelet-like II. GENERATION OF BASIS FUNCTIONS
functions is also investigated. The advantages
and disadvantages of this technique for deriving The method for generating the wavelet-like
wavelet-like basis functions will be discussed. basis was first discussed by Jaffard in [4].

Consider the generation of linear wavelet-like
Keywords: Wavelets, Iterative Techniques, functions for which the domain, Q, is the line
Finite Element Methods segment 0•<x< •1. Assume that the problem

under consideration has Dirichlet boundary
I. INTRODUCTION conditions so that the value of the solution is

specified at both endpoints of the problem
Wavelets and wavelet analysis have recently domain. This eliminates the necessity of nodes
become increasingly important in the at the endpoints of the domain. To begin the
computational sciences. Wavelets have many multiresolution analysis (MRA) for the
applications in areas such as signal analysis, generation of the linear wavelet-like basis
image compression, and the numerical solution functions, an initial discretization is chosen such
of partial differential equations and integral that there is a single node placed at the midpoint
equations. Only rather recently, however, have of the domain (Fig. 1). This corresponds to
wavelets begun being used in computational beginning with two segments in the initial
electromagnetics. The multiresolution time discretization; one segment from 0 x < 0. 5, and
domain technique (MRTD), developed by Katehi another segment from 0.5 _ x •< 1. This particular
et. al, has attracted abundant interest in the use of discretization is not a requirement; a very simple
wavelets as basis functions [1]. Gordon has used or extremely complex segmentation may be used
wavelet-like basis functions in the numerical as the initial discretization of the problem
solution of elliptic partial differential equations domain.
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functions will be orthonormalized against each
other.

o Beginning ,nesh with a single node

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 0 Sningle Node t the Beginngo
A..±..... e Ad do M Cl the Se2 n dLevel

Fig. 1. Initial discretization with a single node in the mesh. 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.075 1.000

This beginning discretization is chosen for ease Fig. 3. Initial discretization with added nodes from second
of illustration of the MRA. The traditional linear level of the MRA.

basis function associated with the node
atx = 0.5 is normalized (Fig. 2). After the orthonormalization, the two functions

can be added to the wavelet-like basis. Now the
second level of the MRA is complete and there
are three wavelet-like functions in the basis. The
wavelet-like function associated with the node at

1.5 x = 0.25 is shown in Fig. 4.

1.0 "____________________

2.0
0.5-

0.0

0.0 0.2 0.4 0.6 0.8 1.0 . 0

Fig. 2. Wavelet-like function from the first level of the .1.0
MRA.

The first level of the MRA has now been 20 .0 0.2 0.4 0'. 0.8 to

completed and this function is considered to be X

the first wavelet-like basis function. To begin Fig. 4. Wavelet-like function added at the second level of
the second level of the MRA, each of the two the MIRA.
segments from the first level is divided into two
equal segments. After doing this, there are now The process of subdividing the segments and
four segments in the domain: one segment from orthogonalizing traditional basis functions
0 < x < 0.25, another segment from against previous wavelet-like basis functions and
0.25 < x < 0.5, another from 0.5 < x < 0.75, and then orthonormalizing the resulting functions can

another from 0.75 < x <1.0. The node at be continued until the desired level of

x = 0.5 is not a new node, and the function discretization is reached. Figures 5, 6, and 7

associated with it is discarded. The nodes show the progression of the subdivision of the

located atx =0.25 and atx = 0.75 are new nodes line segment from the third level to the fifth level

(Fig. 3). Therefore, these two nodes need to be of the analysis. Also, the linear wavelet-like

considered in the analysis. Next, the traditional basis function associated with the node at

basis functions that are associated with the two x = 0.375, which was added during the third

nodes are orthogonalized against the wavelet-like level of the MRA, is shown in Fig. 8.

function from the first level; then, the resulting
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There are two methods that have been used to
generate higher dimensional wavelet-like
functions. One possibility is to generate them
from their higher dimensional traditional finite

1 00 0. 00 0 = . . element counterparts. For example, a piecewise
0.000 0.125 0.20. 0 0.625 0.750 0.875 1,000 linear two-dimensional wavelet-like basis can be

Fig. 5. Second Level discretization with added nodes from generated from the traditional two-dimensional
the third level, tetrahedral basis. However, this is not how

higher dimensional wavelets are typically
created. Instead, they are generally formed from
products of one-dimensional wavelets [5]. In

A 'L- two dimensions, this yields

0.000 0.125 0.200 0G.75 0.500 0.625 0.750 0.075 1.000 T' ,, (x , y ) = = T .(x ) T (y ) (1)

Fig. 6. Third level discretization with added nodes from
the fourth level. Hutchcraft and Gordon have shown that this

technique can also be employed using products
of wavelet-like functions [6].

AM g;, _'e, Just as higher dimensional wavelet-like

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0,875 1.000 functions can be generated using their traditional
counterparts, so can higher order wavelet-like

Fig. 7. Fourth level discretization with added nodes from functions. These functions have been used by
the fifth level. Hutchcraft and Gordon in the numerical solution

of a one-dimensional problem in [7] in which the
traditional piecewise cubic basis functions are
used to generate piecewise cubic wavelet-like

30 basis functions. Implementing both of these
2.0 concepts, higher order, higher-dimensional

wavelet-like functions can be generated by
forming products of one-dimensional higher

0.0 order wavelet-like functions.

-1.0 • III. EXAMPLES OF ONE AND TWO-

20 DIMENSIONAL BASIS FUNCTIONS

0.0 0'2 0'4 x0.6 0,8 1.0 Consider a rectangular region as the domain

Fig. 8. Wavelet-like function added at the third level of for a two-dimensional problem. To obtain a two-
the MRA. dimensional wavelet-like basis, one-dimensional

wavelet-like functions need to be generated in
This concludes the discussion of the generation both the x- and y-directions by the method
of one-dimensional linear wavelet-like functions. outlined previously. For the two-dimensional
Now there will be a brief discussion of the wavelet-like basis, all products of a wavelet-like
generation of higher dimensional and higher function in the x-direction with a wavelet-like
order wavelet-like functions. function in the y-direction will be considered a

two-dimensional wavelet-like basis function;
thus, the total number of wavelet-like functions
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generated by this procedure will be the total function from the second level of the MRA in the
number of wavelet-like functions in the x- y-direction.
direction multiplied by the total number of
wavelet-like functions in the y-direction.

To aid in the visualization of these functions, .
Figs. 9-16 show several one- and two- 3rd on
dimensional linear and cubic wavelet-like
functions. First, Figs. 9 and 10 illustrate one- 2

dimensional cubic wavelet-like functions. In
Fig. 10, the more slowly varying of the two
functions is from the first level of the MRA. It

has a single piecewise cubic representation over
the entire domain. The other function in Fig. 10 -2

is from the second level in the MRA. It is also
piecewise cubic, but it has two different , 53 05 57 09
representations; one representation for the x
segment 0 < x < 0.5 and another representation for Fig. 10. Third order wavelet-like basis functions from the
the segment from0.5 < x _< 1.0. 2 nd and 3rd levels.

2- - t Level Fuction B 2 (x)B 3 (y)
S2nd Level Function

-2

0.1 0.3 0.5 0.7 0.9
x 

Q •

Fig. 9. Third order wavelet-like basis functions from the 1"
and 2 nd levels. Fig. 11. Linear wavelet-like basis function obtained from a

As discussed previously, two-dimensional 2nd level x and 2nd level y function.

wavelet-like functions are obtained by forming Plots of several two-dimensional cubic wavelet-
products of one-dimensional wavelet-like like basis functions are shown in Figs. 12, 13, 14,
functions. Figure 11 shows a two-dimensional and 15. Bi(x,y) is a cubic wavelet-like basis
linear wavelet-like function. The linear wavelet- function that is generated from the first level in
like function B6(x,y), which could also be written both the x- and y-directions (Fig. 12). As can be
as B2(x)B3(y) to denote that it is derived from the seen from the figure, this function is nonzero
product of the 2 nd basis function in the x- over most of the domain. It is also a piecewise
direction and the 3rd basis function in the y- cubic polynomial in the x-direction and a
direction, is formed from a function from the piecewise cubic polynomial in the y-direction.
second level of the MRA in the x-direction and a B5(x,y) and Bio(x,y) are both generated from the

first level of the MRA in the y-direction and the
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second level of the MRA in the x-direction (Figs. B10(X'y)

13 and 14). In the x-direction, each of these two
functions has two different piecewise cubic
representations; on the other hand, both of these R
functions have a single representation in the y-
direction. Specifically, in the x-direction, there ,
is one piecewise cubic representation for the • "
segment 0•_< x •2.0, and another piecewise q-

cubic representation for the segment
2.0 < x •4.0. Bi5 (x,y) is a basis function that is -

obtained from a second level x-directed function _"
and a second level y-directed function (Fig. 15).
This function has two different piecewise cubic
representations in both the x- and y-directions. Fig. 14. Cubic wavelet-like basis function obtained from a

Bl(x,y) 2nd level x and 1•" level y function.

B,,(x,y)

Y I_

Fig. 12. Cubic wavelet-like basis function obtained from a
I level x and 1st level y function.

B5(x,y)

Fig. 15. Cubic wavelet-like basis function obtained from a

2nd level x and 2 "d level y function.

With wavelet analysis, as levels in the MRA

"/_-.7..' : are added, the w avelets becom e m ore localized.
" •., . -- As can be seen from these figures, the wavelet-

like basis functions also possess this property;
they have a large magnitude in a smaller portion
of the domain as the level in the MRA for either
(or both) the x- or y-directions increases. BI(x,y)
has a rather large magnitude over the entire
domain. Again, B5(x,y) and Bio(x,y) are from

Fig. 13. Cubic wavelet-like basis function obtained from a the second level in the x-direction and the first
2 d level x and 1I" level y function, level in the y-direction; notice that these two

functions have a large value only in half of the
region. Bls(x,y) is a function from the second
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level in both the x- and y-directions and its value which was obtained with 55 cubic wavelet-like
is large only in one-quarter of the domain, basis functions, are compared along the line

y=l.5 (Fig. 18). Again, these two curves are
IV. EXAMPLE PROBLEM indistinguishable on the graph. The numerical

solution obtained with only 25 cubic wavelet-like
As an example of the use of the wavelet-like basis functions is plotted in figure 19. For this

basis functions, consider the following graph, five cubic wavelet-like functions in each
differential equation direction were used as the two-dimensional

basis. As expected, very few cubic basis

-V.(a(x,y)Vu(x,y))+b(x,y)u(x,y) =g(x,y) (2) functions are necessary to obtain an accurate
solution. From these figures, it is seen that the
solutions obtained are accurate when either cubic

in which the domain is the rectangular region or linear wavelet-like basis functions are used.from x=0.0to x=4.0 and from y:=0.0 to

y = 3.0. Laplace's equation can be obtained by Although the ability of any basis function to

choosing the following: a(x, y) = -1.0, accurately model an arbitrary function is quite

b(x, y) = 0.0, and g(x, y) = 0.0. An illustration important, the wavelet-like basis also has other

of the problem domain along with the boundary advantages. Previously, wavelet-like functions

conditions is shown in Fig. 16. have been shown to have extremely good
convergence and stability properties. After

u(x,3.0) = sin(nx/4) diagonal preconditioning, the condition number
of the system matrix was calculated. Figure 20
illustrates how the condition number varies as

u(O.O,y)=O.O u(4.O,y)=O.O the number of basis functions is increased.
Because the condition number of the system
matrix is much smaller for the wavelet-like bases

u(x,0.0)=O.O in comparison with the rapidly rising condition

Fig. 16. Problem domain. number when the traditional basis is used, the
condition numbers when the linear and cubic

Solutions were obtained using the traditional wavelet-like basis functions are used are shown

two-dimensional basis functions, two- separate in Fig. 21. The benefits of this low

dimensional basis functions that were products of condition number are especially evident when

linear wavelet-like basis functions, and two- looking at the number of steps required for

dimensional basis functions that were products of convergence of the conjugate gradient method.

cubic wavelet-like basis functions. A In Fig. 22, the number of steps required for

comparison of the analytic solution and the convergence of the conjugate gradient method is

numerical solution, which was found using 961 plotted as the number of basis functions is

linear wavelet-like basis functions, is made along increased. With approximately 225 basis

the line x = 1.5 (Fig. 17). The numerical functions, the traditional basis requires 78 steps

solution in this case corresponds to 31 wavelet- for convergence; this is in contrast to only 34 for

like functions in each direction (31 *31=961 total 225 linear wavelet-like basis functions and only

basis functions). To illustrate the accuracy when 18 for 253 cubic wavelet-like basis functions.
the linear wavelet-like basis is used, the curves
for the numerical solution and the analytic
solution lie on top of each other. To illustrate
that an accurate solution is also obtained when
the cubic wavelet-like basis functions is used, the
analytic solution and the numerical solution,
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Solution Along the Line x=1 .5 Condition number

F~ovIet~~eoouoon400 --- C,11, Wuve-Ulke
0.8 IAu~i~Ii~n ieWullLk

Lin-a TradUjona

300
0.6

0.4 200

0.210

0.0 -0

0.0 0.5 1.0 1.5 2.0 2.0 3.0 0 200 400 600 600 10'00

Fig. 17. Numerical (with 961 linear 2D wavelet-like basis) Fig. 20. Condition numbe~r-c'om-p"ar'ison of wavelet-like and
and analytic solutions along the line x =1.5. traditional basis.

Solution along the line y=1.5 Condition number

0.25 
1

0.20

0.00- 0
0 1 23 4 0 200 400 600 g00 1000

Fig. 18. Numerical and analytic solution along the line Fig. 2 1. Condition number when wavelet-like bases Are
y=l 1.5. used.

Steps Required for Convergence

-~~ -r ----------"

-\0 m

0 200 400 800 800 1000

Fig. 19. Numerical solution when 25 cubic wavelet-like
functions are used. Fig. 22. Steps required for convergence.
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